Proteins are made from 20 amino acids, some of which the body can make itself (non-essential) and some of which must be consumed in the diet (essential). The branched chain amino acids (or BCAAs) are the three essential amino acids of leucine, isoleucine and valine. Together, they make up 35% of the essential amino acids contained in muscles(1). They are ‘essential’ because they must be consumed in the diet, as the body cannot make them out of other amino acids. BCAAs are naturally found in foods that are high in protein, with the highest concentrations found in animal protein, including meat and dairy foods.
BCAAs are referred to as ‘branched chain’ amino acids because of their special molecular structure. From an exercise perspective, BCAAs are especially relevant as our muscles can use them to provide energy during exercise but also because they are required to stimulate the process of muscle protein synthesis. In this regard, the BCAA leucine is the main BCAA that is used to produce energy during exercise and is also the key amino acid that stimulates muscle protein synthesis in the post-exercise recovery period(2).
BCAAs consumed in “free form” require minimal digestion and are rapidly absorbed into the blood stream; therefore, they can be taken up by muscles during exercise. Given that exercise suppresses muscle protein synthesis whilst concomitantly increasing muscle protein breakdown (i.e. inducing a negative muscle protein balance), it is useful to ingest BCAAs prior to or during exercise(3). In this way, muscle protein breakdown is reduced and muscle protein synthesis can be increased in the post-exercise recovery period. Additionally, BCAAs can also be consumed immediately post-exercise so as to stimulate muscle protein synthesis and facilitate training adaptations.
If you are a vegetarian then you may also struggle to get sufficient amounts of BCAAs within your normal diet. Although soy protein contains a full “essential” amino acid profile, the BCAA levels are lower than in sources such as whey. As such, vegetarian or vegan athletes may therefore benefit from consuming BCAAs before, during and/or after exercise.
Fasted training has become a popular way to manage your body composition and promote aerobic adaptations in muscle, but exercising with low carbohydrate availability can mean the body is more prone to using BCAAs for energy metabolism(4). Consuming BCAAs before and/or during low carbohydrate training may help prevent muscle breakdown. Research has suggested that BCAA supplementation (particularly leucine enriched protein feeding) does not impair free fatty acid availability or fat oxidation during exercise in a carbohydrate restricted state. This can help the athlete undergo fasted training, while promoting muscle adaptations(5).
Advanced Isolate+ contains 9g of BCAAs, including 5g of leucine. This is the ideal shake to have before or after exercise. WHEY20’s also provide 7g of BCAAs, without the need for water and shakers. Use these before, during and/or post work-out or throughout the day to get your 20-25g of protein every 3-4 hours(6).
The aim of resistance or strength training is to make the muscle stronger by altering its structure and often involves muscle growth (i.e. muscle hypertrophy). Given that the BCAAs are especially important in stimulating muscle protein synthesis (i.e. the process underpinning muscle hypertrophy), then it is useful to also consume BCAAs before, during and/or after strength training sessions. Indeed, consuming a sub-optimal dose of whey protein but supplemented with additional BCAAs can induce equivalent rates of muscle protein synthesis to that induced by 25 g of whey protein (7, 8).
Given that prolonged and intense endurance exercise increases muscle protein breakdown (as it uses our muscle BCAA pool to contribute to energy production), it is useful to ingest BCAAs before, during and/or after such activity. In this way, muscle protein breakdown can be reduced during exercise and muscle protein synthesis can be increased in the recovery period.
BCAA supplementation with endurance training may also facilitate adaptations in aerobic power and post-exercise recovery in trained athletes (9).
References